An adaptive method for bandwidth selection in circular kernel density estimation

Varování

Publikace nespadá pod Fakultu sportovních studií, ale pod Přírodovědeckou fakultu. Oficiální stránka publikace je na webu muni.cz.
Autoři

ZÁMEČNÍK Stanislav HOROVÁ Ivanka KATINA Stanislav HASILOVÁ Kamila

Rok publikování 2023
Druh Článek v odborném periodiku
Časopis / Zdroj Computational Statistics
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www https://link.springer.com/article/10.1007/s00180-023-01401-0
Doi http://dx.doi.org/10.1007/s00180-023-01401-0
Klíčová slova Circular density; Bandwidth selector; Adaptive kernel estimator; Von Mises density; Smoothed cross validation
Popis Kernel density estimations of circular data are an effective type of nonparametric estimation. The performance of these estimations depends significantly on a smoothing parameter referred to as bandwidth. Selecting suitable bandwidths for these types of estimation pose fundamental challenges, therefore fixed bandwidth selectors are often the initial choice. The study investigates common bandwidth selection methods and proposes novel methods which adopt the idea from the linear case. The attention is also paid to variable bandwidth selection. Using simulations which incorporate a range of circular distributions that exhibit multimodality, peakedness and skewness, the proposed methods were evaluated and then compared with other bandwidth selectors to determine their potential advantages. Two real datasets, one containing animal movements and the other wind direction data, were applied to illustrate the utility of the proposed methods.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info