Evaluation of the Cross-lingual Embedding Models from the Lexicographic Perspective

Logo poskytovatele

Varování

Publikace nespadá pod Fakultu sportovních studií, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.
Autoři

DENISOVÁ Michaela RYCHLÝ Pavel

Rok publikování 2023
Druh Článek ve sborníku
Konference Electronic lexicography in the 21st century (eLex 2023): Invisible Lexicography. Proceedings of the eLex 2023 conference
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
www Plný text
Klíčová slova cross-lingual embedding models; bilingual lexicon induction task; retrieving translation equivalents; evaluation
Popis Cross-lingual embedding models (CMs) enable us to transfer lexical knowledge across languages. Therefore, they represent a useful approach for retrieving translation equivalents in lexicography. However, these models have been mainly oriented towards the natural language processing (NLP) field, lacking proper evaluation with error evaluation datasets that were compiled automatically. This causes discrepancies between models hindering the correct interpretation of the results. In this paper, we aim to address these issues and make these models more accessible for lexicography by evaluating them from a lexicographic point of view. We evaluate three benchmark CMs on three diverse language pairs: close, distant, and different script languages. Additionally, we propose key parameters that the evaluation dataset should include to meet lexicographic needs, have reproducible results, accurately reflect the performance, and set appropriate parameters during training. Our code and evaluation datasets are publicly available.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info