A note on geometric algebras and control problems with SO(3)-symmetries

Investor logo

Warning

This publication doesn't include Faculty of Sports Studies. It includes Faculty of Science. Official publication website can be found on muni.cz.
Authors

HRDINA Jaroslav NÁVRAT Aleš VAŠÍK Petr ZALABOVÁ Lenka

Year of publication 2024
Type Article in Periodical
Magazine / Source Mathematical Methods in the Applied Sciences
MU Faculty or unit

Faculty of Science

Citation HRDINA, Jaroslav, Aleš NÁVRAT, Petr VAŠÍK and Lenka ZALABOVÁ. A note on geometric algebras and control problems with SO(3)-symmetries. Mathematical Methods in the Applied Sciences. Wiley, 2024, vol. 47, No 3, p. 1257-1273. ISSN 0170-4214. Available from: https://dx.doi.org/10.1002/mma.8662.
web https://doi.org/10.1002/mma.8662
Doi http://dx.doi.org/10.1002/mma.8662
Keywords Carnot groups; geometric algebras; local control and optimality; sub-Riemannian geodesics; symmetries
Description We study the role of symmetries in control systems through the geometric algebra approach. We discuss two specific control problems on Carnot groups of step 2 invariant with respect to the action of SO (3). We understand the geodesics as the curves in suitable geometric algebras which allows us to assess a new algorithm for the local control.
Related projects:

You are running an old browser version. We recommend updating your browser to its latest version.

More info

By clicking “Accept Cookies”, you agree to the storing of cookies on your device to enhance site navigation, analyze site usage, and assist in our marketing efforts. Cookie Settings

Necessary Only Accept Cookies