q-Karamata functions and second order q-difference equations

Logo poskytovatele

Varování

Publikace nespadá pod Fakultu sportovních studií, ale pod Pedagogickou fakultu. Oficiální stránka publikace je na webu muni.cz.
Autoři

ŘEHÁK Pavel VÍTOVEC Jiří

Rok publikování 2011
Druh Článek v odborném periodiku
Časopis / Zdroj Electronic Journal of Qualitative Theory of Differential Equations
Fakulta / Pracoviště MU

Pedagogická fakulta

Citace
Obor Obecná matematika
Klíčová slova regularly varying functions; rapidly varying functions; q-difference equations; asymptotic behavior
Popis In this paper we introduce and study $q$-rapidly varying functions on the lattice $\qN:=\{q^k:k\in\N_0\}$, $q>1$, which naturally extend the recently established concept of $q$-regularly varying functions. These types of functions together form the class of the so-called $q$-Karamata functions. The theory of $q$-Karamata functions is then applied to half-linear $q$-difference equations to get information about asymptotic behavior of nonoscillatory solutions. The obtained results can be seen as $q$-versions of the existing ones in the linear and half-linear differential equation case. However two important aspects need to be emphasized. First, a new method of the proof is presented. This method is designed just for the $q$-calculus case and turns out to be an elegant and powerful tool also for the examination of the asymptotic behavior to many other $q$-difference equations, which then may serve to predict how their (trickily detectable) continuous counterparts look like. Second, our results show that $\qN$ is a very natural setting for the theory of $q$-rapidly and $q$-regularly varying functions and its applications, and reveal some interesting phenomena, which are not known from the continuous theory.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info