Thread graphs, linear rank-width and their algorithmic applications

Varování

Publikace nespadá pod Fakultu sportovních studií, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.
Autoři

GANIAN Robert

Rok publikování 2011
Druh Článek ve sborníku
Konference Combinatorial Algorithms 2010
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
Doi http://dx.doi.org/10.1007/978-3-642-19222-7_5
Obor Informatika
Klíčová slova rank-width; linear rank-width; thread graphs; bandwidth; path-width
Popis Many NP-hard graph problems can be efficiently solved on graphs of bounded tree-width. Several articles have recently shown that the so-called rank-width parameter also allows efficient solution of most of these NP-hard problems, while being less restrictive than tree-width. On the other hand however, there exist problems of practical importance which remain hard on graphs of bounded rank-width, and even of bounded tree-width or trees. In this paper we consider a more restrictive version of rank-width called linear rank-width, analogously to how path-width is obtained from tree-width. We first provide a characterization of graphs of linear rank-width 1 and then show that on such graphs it is possible to obtain better algorithmic results than on distance hereditary graphs and even trees. Specifically, we provide polynomial algorithms for computing path-width, dominating bandwidth and a 2-approximation of ordinary bandwidth on graphs of linear rank-width 1.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info