Learning Representative Patterns From Real Chess Positions: A Case Study

Varování

Publikace nespadá pod Fakultu sportovních studií, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.
Autoři

ŽIŽKA Jan MÁDR Michal

Rok publikování 2003
Druh Článek ve sborníku
Konference Proceedings of the First Indian International Conference on Artificial Intelligence (IICAI-03)
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
Obor Informatika
Klíčová slova pattern recognition; decision trees; classification; representation of examples; relevant attributes
Popis This paper deals with a particular pattern recognition by machine learning. The patterns are specific chess positions. A computer learns if a special pattern leads to a winning or losing game, i.e., a classification task based on real results and examples. As a learning algorithm, decision trees generated by the program C5/See5, also with boosting, were used. This algorithm does not employ chess rules or calculations of positions, it just learns from a selected set of 450 training positive and negative examples with 8 different representations of real positions played by human players. The most accurate classification reaches 92.98% for the combination of automatically generated trivial descriptions of positions (64 attributes) with expert descriptions suggested by humans (92 attributes).
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info