Combining fold recognition and exploratory data analysis for searching for glycosyltransferases in the genome of Mycobacterium tuberculosis

Varování

Publikace nespadá pod Fakultu sportovních studií, ale pod Přírodovědeckou fakultu. Oficiální stránka publikace je na webu muni.cz.
Autoři

WIMMEROVÁ Michaela ENGELSEN Soren B. BETTLER Emmanuel BRETON Christelle IMBERTY Anne

Rok publikování 2003
Druh Článek v odborném periodiku
Časopis / Zdroj Biochimie
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
Obor Biochemie
Klíčová slova Glycosyltransferase; Mycobacterium; Fold recognition; Chemometrics
Popis Fold recognition was applied to the systematic analysis of the all sequences encoded by the genome of Mycobacterium tuberculosis H37Rv in order to identify new putative glycosyltransferases. The search was conducted against a library composed of all known crystal structures of glycosyltransferases and some related proteins. A clear relationship appeared between some sequences and some folds. It appears necessary to complete the fold recognition approach with a statistical approach in order to identify the relevant data above the background noise. Exploratory data analysis was carried out using several methods. Analytical methods confirmed the validity of the approach, while predictive methods, although very preliminary in the present case, allowed for identifying a number of sequences of interest that should be further investigated. This new approach combining bioinformatics and chemometrics appears to be a powerful tool for analysis of newly sequenced genomes. Its application to glycobiology is of great interest.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info