Hilbert-space techniques for spectral representation in terms of overcomplete bases

Varování

Publikace nespadá pod Fakultu sportovních studií, ale pod Přírodovědeckou fakultu. Oficiální stránka publikace je na webu muni.cz.
Autoři

VESELÝ Vítězslav

Rok publikování 2002
Druh Článek ve sborníku
Konference Proceedings of the Summer School DATASTAT'2001, Folia Fac. Sci. Nat. Univ. Masaryk. Brunensis, Mathematica 11
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
Obor Obecná matematika
Klíčová slova functional approximation; kernel operators; frame and wavelet expansions; pseudoinverse operators
Popis Topics associated with the representation of objects from a separable Hilbert space in terms of an a priori given overcomplete system (dictionary) of its generators (atoms) are handled. First the procedure of finding such a representation is formulated and solved using the Hilbert-space technique of linear bounded operators and their generalized inverse. Afterwards the problem of finding its sparse representation is discussed, i.e. such representation where most information on the given object is concentrated in a fewest possible number of its nonzero (spectral) coefficients in that representation. This may be rephrased as a procedure for finding a subbasis which is in a certain sense optimal for the given object in the scope of the prescribed overcomplete system. In general the common approach based on Moore-Penrose pseudoinverse does not yield the desired sparse solutions. That is why alternate procedures are discussed, in particular from the point of view of their numerical stability and computational feasibility.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info