KInIT at SemEval-2024 Task 8: Fine-tuned LLMs for Multilingual Machine-Generated Text Detection

Varování

Publikace nespadá pod Fakultu sportovních studií, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.
Autoři

SPIEGEL Michal DOMINIK Macko

Rok publikování 2024
Druh Článek ve sborníku
Konference Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
www https://aclanthology.org/2024.semeval-1.84/
Doi http://dx.doi.org/10.18653/v1/2024.semeval-1.84
Klíčová slova machine-generated text detection; natural language processing; large language models; ensemble
Popis SemEval-2024 Task 8 is focused on multigenerator, multidomain, and multilingual black-box machine-generated text detection. Such a detection is important for preventing a potential misuse of large language models (LLMs), the newest of which are very capable in generating multilingual human-like texts. We have coped with this task in multiple ways, utilizing language identification and parameter-efficient fine-tuning of smaller LLMs for text classification. We have further used the per-language classification-threshold calibration to uniquely combine fine-tuned models predictions with statistical detection metrics to improve generalization of the system detection performance. Our submitted method achieved competitive results, ranking at the fourth place, just under 1 percentage point behind the winner.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info