Computer-Aided Approach for BI-RADS Breast Density Classification: Multicentric Retrospective Study

Varování

Publikace nespadá pod Fakultu sportovních studií, ale pod Lékařskou fakultu. Oficiální stránka publikace je na webu muni.cz.
Autoři

KVAK Daniel BIROŠ Marek HRUBÝ Robert JANŮ Eva

Rok publikování 2024
Druh Kapitola v knize
Fakulta / Pracoviště MU

Lékařská fakulta

Citace
Popis Assessing mammographic breast density, a crucial risk determinant for breast cancer, is typically conducted by radiologists through a visual examination of mammography images using the Breast Imaging and Reporting Data System (BI-RADS) breast density classification. However, significant interobserver variability among radiologists leads to inconsistency and potential inaccuracy in breast density assessments and consequent risk predictions. To address this, we analyzed 3835 Full-Field Digital Mammography (FFDM) studies from three mammographic centers. A team of 10 radiologists with experience in breast imaging ranging from 2 to 27 years evaluated these studies, establishing a ground truth for 2127 cases. We utilized 1122 (BI-RADS A: 356, BI-RADS B: 356, BI-RADS C: 356, BI-RADS D: 54) of the studies for training and 122 (BI-RADS A: 39, BI-RADS B: 39, BI-RADS C: 39, BI-RADS D: 5) for testing our Deep-Learning-based Automatic Detection (DLAD) algorithm. The proposed DLAD demonstrated an overall high accuracy (0.853), with balanced accuracy (BA) scores of 0.899 for BI-RADS Category A, 0.838 for Category B, 0.900 for Category C, and 0.900 for Category D. Our findings suggest that the proposed DLAD model can serve as a substantial support in the evaluation process, introducing an additional layer of analysis.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info