Towards Personalized Similarity Search for Vector Databases

Varování

Publikace nespadá pod Fakultu sportovních studií, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.
Autoři

MAHRÍK Marek ŠIKYŇA Matúš MÍČ Vladimír ZEZULA Pavel

Rok publikování 2024
Druh Článek ve sborníku
Konference 17th International Conference on Similarity Search and Applications (SISAP 2024)
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
Doi http://dx.doi.org/10.1007/978-3-031-75823-2_11
Klíčová slova Similarity search;Personalized similarity;Vector databases
Popis The importance of similarity search has become prominent in the fast-evolving vector databases, which apply content embedding techniques on complex data to produce and manage large collections of high-dimensional vectors. Processing of such data is only possible by using a similarity function for storage, structure, and retrieval. However, if multiple users access the collection, their views on similarity can differ as similarity, in general, is subjective and context-dependent. In this article, we elaborate on the problem of a similarity search engine implementation, where users use a common index but search with personalised views of similarity, implemented by a possibly different similarity model. Specifically, we define a foundational theoretical framework and conduct experiments on real-life data to confirm the viability of such an approach. The experiments also indicate future research directions needed to propose and implement an effective and efficient personalised similarity search engine.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info