UNIFORM TURAN DENSITY OF CYCLES

Varování

Publikace nespadá pod Fakultu sportovních studií, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.
Autoři

BUCIC Matija COOPER Jacob KRÁĽ Daniel MOHR Samuel CORREIA David Munha

Rok publikování 2023
Druh Článek v odborném periodiku
Časopis / Zdroj Transactions of the American Mathematical Society
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
www https://www.ams.org/journals/tran/2023-376-07/S0002-9947-2023-08873-0/
Doi http://dx.doi.org/10.1090/tran/8873
Klíčová slova EXTREMAL PROBLEMS; TURÁN NUMBER; HYPERGRAPHS; GRAPHS
Popis In the early 1980s, Erdos and Sos initiated the study of the classical Turan problem with a uniformity condition: the uniform Turan density of a hypergraph H is the infimum over all d for which any sufficiently large hypergraph with the property that all its linear-size subhypergraphs have density at least d contains H. In particular, they raise the questions of determining the uniform Turan densities of K-4((3)-) and K-4((3)). The former question was solved only recently by Glebov, Kral', and Volec [Israel J. Math. 211 (2016), pp. 349-366] and Reiher, Rodl, and Schacht [J. Eur. Math. Soc. 20 (2018), pp. 1139-1159], while the latter still remains open for almost 40 years. In addition to K-4((3)-), the only 3-uniform hypergraphs whose uniform Turan density is known are those with zero uniform Turan density classified by Reiher, Rodl and Schacht [J. London Math. Soc. 97 (2018), pp. 77-97] and a specific family with uniform Turan density equal to 1/27.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info