COMPYDA: An online tool for verifying the similarity of image datasets

Varování

Publikace nespadá pod Fakultu sportovních studií, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.
Autoři

NEČASOVÁ Tereza MÚČKA Daniel SVOBODA David

Rok publikování 2024
Druh Článek ve sborníku
Konference 2024 IEEE International Symposium on Biomedical Imaging (ISBI)
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
www https://ieeexplore.ieee.org/document/10635415
Doi http://dx.doi.org/10.1109/ISBI56570.2024.10635415
Klíčová slova Web-service;Statistics;Data validation;Image descriptors;Privacy;Augmented data
Popis Nowadays, when the vast majority of biomedical research relies on machine learning methods, paying attention to the meaningfulness of the data we work with is crucial. This is especially true if the dataset is scarce and we are required to use various augmentation techniques to enlarge training sets. The additional data are, however, not guaranteed to have the same characteristics as the original data, and therefore, the augmented set may be inconsistent. This can subsequently lead to incorrect training of biomedical image analysis methods, which may result in biased classification, detection, segmentation, or tracking results. In this paper, we present an online tool called COMPYDA, that allows users to easily assess the similarity of a pair of datasets using well-founded, commonly used statistic methods. COMPYDA guides users through univariate and multivariate analyses and helps them understand and explain dataset differences to ascertain a compatible dataset for further training. The tool is available at: https://cbia.fi.muni.cz/compyda/
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info