Sparse Graphs of Twin-width 2 Have Bounded Tree-width

Varování

Publikace nespadá pod Fakultu sportovních studií, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.
Autoři

BERGOUGNOUX Benjamin GAJARSKÝ Jakub GUSPIEL Grzegorz Jan HLINĚNÝ Petr POKRÝVKA Filip SOKOŁOWSKI Marek

Rok publikování 2023
Druh Článek ve sborníku
Konference ISAAC 2023
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
Doi http://dx.doi.org/10.4230/LIPICS.ISAAC.2023.11
Klíčová slova twin-width; tree-width; excluded grid; sparsity
Popis Twin-width is a structural width parameter introduced by Bonnet, Kim, Thomassé and Watrigant [FOCS 2020]. Very briefly, its essence is a gradual reduction (a contraction sequence) of the given graph down to a single vertex while maintaining limited difference of neighbourhoods of the vertices, and it can be seen as widely generalizing several other traditional structural parameters. Having such a sequence at hand allows to solve many otherwise hard problems efficiently. Our paper focuses on a comparison of twin-width to the more traditional tree-width on sparse graphs. Namely, we prove that if a graph G of twin-width at most 2 contains no K_{t,t} subgraph for some integer t, then the tree-width of G is bounded by a polynomial function of t. As a consequence, for any sparse graph class C we obtain a polynomial time algorithm which for any input graph G ? C either outputs a contraction sequence of width at most c (where c depends only on C), or correctly outputs that G has twin-width more than 2. On the other hand, we present an easy example of a graph class of twin-width 3 with unbounded tree-width, showing that our result cannot be extended to higher values of twin-width.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info