On symmetries of a sub-Riemannian structure with growth vector (4,7)
Autoři | |
---|---|
Rok publikování | 2023 |
Druh | Článek v odborném periodiku |
Časopis / Zdroj | Annali di Matematica Pura ed Applicata |
Fakulta / Pracoviště MU | |
Citace | |
www | https://link.springer.com/article/10.1007/s10231-022-01242-6 |
Doi | http://dx.doi.org/10.1007/s10231-022-01242-6 |
Klíčová slova | Nilpotent algebras; Lie symmetry group; Carnot groups; Sub-Riemannian geodesics |
Popis | We study symmetries of specific left-invariant sub-Riemannian structure with filtration (4, 7) and their impact on sub-Riemannian geodesics of corresponding control problem. We show that there are two very different types of geodesics, they either do not intersect the fixed point set of symmetries or are contained in this set for all times. We use the symmetry reduction to study properties of geodesics. |
Související projekty: |