Deep Learning Analysis of Polish Electronic Health Records for Diagnosis Prediction in Patients with Cardiovascular Diseases

Logo poskytovatele

Varování

Publikace nespadá pod Fakultu sportovních studií, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.
Autoři

ANETTA Krištof HORÁK Aleš JADCZYK Tomasz WOJAKOWSKI Wojciech WITA Krystian

Rok publikování 2022
Druh Článek v odborném periodiku
Časopis / Zdroj Journal of Personalized Medicine
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
www https://www.mdpi.com/2075-4426/12/6/869
Doi http://dx.doi.org/10.3390/jpm12060869
Klíčová slova electronic health records; deep learning; text analysis; diagnosis prediction; Polish language
Popis Electronic health records naturally contain most of the medical information in the form of doctor’s notes as unstructured or semi-structured texts. Current deep learning text analysis approaches allow researchers to reveal the inner semantics of text information and even identify hidden consequences that can offer extra decision support to doctors. In the presented article, we offer a new automated analysis of Polish summary texts of patient hospitalizations. The presented models were found to be able to predict the final diagnosis with almost 70% accuracy based just on the patient’s medical history (only 132 words on average), with possible accuracy increases when adding further sentences from hospitalization results; even one sentence was found to improve the results by 4%, and the best accuracy of 78% was achieved with five extra sentences. In addition to detailed descriptions of the data and methodology, we present an evaluation of the analysis using more than 50,000 Polish cardiology patient texts and dive into a detailed error analysis of the approach. The results indicate that the deep analysis of just the medical history summary can suggest the direction of diagnosis with a high probability that can be further increased just by supplementing the records with further examination results.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info