Exploring attractor bifurcations in Boolean networks

Varování

Publikace nespadá pod Fakultu sportovních studií, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.
Autoři

BENEŠ Nikola BRIM Luboš KADLECAJ Jakub PASTVA Samuel ŠAFRÁNEK David

Rok publikování 2022
Druh Článek v odborném periodiku
Časopis / Zdroj BMC Bioinformatics
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
www https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-022-04708-9
Doi http://dx.doi.org/10.1186/s12859-022-04708-9
Klíčová slova Boolean networks; Attractor bifurcation; Symbolic computation; Software tool; type-1 interferons
Popis Background Boolean networks (BNs) provide an effective modelling formalism for various complex biochemical phenomena. Their long term behaviour is represented by attractors–subsets of the state space towards which the BN eventually converges. These are then typically linked to different biological phenotypes. Depending on various logical parameters, the structure and quality of attractors can undergo a significant change, known as a bifurcation. We present a methodology for analysing bifurcations in asynchronous parametrised Boolean networks. Results In this paper, we propose a computational framework employing advanced symbolic graph algorithms that enable the analysis of large networks with hundreds of Boolean variables. To visualise the results of this analysis, we developed a novel interactive presentation technique based on decision trees, allowing us to quickly uncover parameters crucial to the changes in the attractor landscape. As a whole, the methodology is implemented in our tool AEON. We evaluate the method’s applicability on a complex human cell signalling network describing the activity of type-1 interferons and related molecules interacting with SARS-COV-2 virion. In particular, the analysis focuses on explaining the potential suppressive role of the recently proposed drug molecule GRL0617 on replication of the virus. Conclusions The proposed method creates a working analogy to the concept of bifurcation analysis widely used in kinetic modelling to reveal the impact of parameters on the system’s stability. The important feature of our tool is its unique capability to work fast with large-scale networks with a relatively large extent of unknown information. The results obtained in the case study are in agreement with the recent biological findings.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info