Exploring the Emission Pathways in Nitrogen-Doped Graphene Quantum Dots for Bioimaging

Logo poskytovatele
Logo poskytovatele
Logo poskytovatele
Logo poskytovatele
Logo poskytovatele

Varování

Publikace nespadá pod Fakultu sportovních studií, ale pod Přírodovědeckou fakultu. Oficiální stránka publikace je na webu muni.cz.
Autoři

GOMEZ PEREZ Inmaculada Jennifer SULLEIRO Manuel Vasques DOLEČKOVÁ Anna PIZÚROVÁ Naděžda MEDALOVÁ Jiřina ROY Rajarshi NEČAS David ZAJÍČKOVÁ Lenka

Rok publikování 2021
Druh Článek v odborném periodiku
Časopis / Zdroj Journal of Physical Chemistry C
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www https://pubs.acs.org/doi/10.1021/acs.jpcc.1c06029#
Doi http://dx.doi.org/10.1021/acs.jpcc.1c06029
Klíčová slova Fluorescence; Chemical synthesis; Transmission electron microscopy; Quantum mechanics; Functional groups
Popis Graphene quantum dots (GQDs) with tunable fluorescence emission promise excellent bioapplication potential, especially in bioimaging. We report the synthesis of nitrogen-doped GQDs (N-GQDs) from glucose and ethylenediamine, cheap and safe chemicals, using a one-step and fast microwave-assisted hydrothermal method. Our N-GQDs exhibit fluorescence in the entire visible spectral region, which extends to near-ultraviolet and slightly to near-infrared. Since the origin of fluorescence and its relation to the structure and synthesis conditions are not yet fully understood, we also concentrated on the fluorescence mechanism explanation. Structural characterization with steady-state and time-resolved photoluminescence measurements indicated that band-to-band transitions, size effect, and different nitrogen and oxygen functional groups play a role in this multicolor emission. Remarkably, we found for the first time the evidence that directly relates a change in the N-GQD work function to the change in oxygen groups under UV irradiation via ultraviolet photoelectron spectroscopy. Thus, we confirmed that for ?ex ? 380 nm, photooxidation processes occurred, which led to chemical modification, thereby lowering the work function in the N-GQDs. The N-GQDs were proved to be highly biocompatible by a cell viability assay using vascular smooth muscle cells. Together with the wide spectral range emission observed in confocal fluorescence imaging, it demonstrated the potential of the N-GQDs for in vitro bioimaging applications.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info