The Industrially Deposited W-B-C Coatings from Segmented Target

Varování

Publikace nespadá pod Fakultu sportovních studií, ale pod Přírodovědeckou fakultu. Oficiální stránka publikace je na webu muni.cz.
Autoři

KROKER Michael MATEJ Pavol SOUČEK Pavel ZÁBRANSKÝ Lukáš BURŠÍKOVÁ Vilma VJAČESLAV Sochora JÍLEK Mojmír VAŠINA Petr

Rok publikování 2021
Druh Konferenční abstrakty
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
Popis The coatings composed of transition metal (Me = Mo, W, Ta, Nb, …), boron, and carbon are promising candidates for next-generation hard protective coatings. The experimental studies are reporting a combination of high hardness and increased fracture resistance for Mo-B-C and W-B-C coatings, which are deposited using sputtering techniques at laboratory conditions. Such properties favor the use of Me-B-C coatings in the industry, where the demand for replacing the hard but brittle state-of-the-art ceramic coatings is significantly increasing. For this study, the W-B-C coatings were sputter-deposited by non-reactive magnetron sputtering using an industrial system provided by the company SHM, Czech Republic. The system utilizes as a sputter source a cylindrical rotating segmented target composed of metal, boron carbide, and graphite segments. As an industrial standard, the planetary table capable of multi-axis rotation of substrates was used to simulate the batch coating of the tools. The depositions were carried out in both stationary regime and single-axis rotation regime to understand the differences between laboratory-like and industrial preparation of the coatings. The properties of the W-B-C coatings were studied over a broad range of their chemical composition. Despite the coatings were mostly amorphous, they still exhibited high hardness (up to 30 GPa) and elastic modulus (up to 450 GPa). The coatings deposited in the rotation regime exhibited multilayered character due to different transport pathways of the light (B,C) and heavy (W) elements. Detailed analyses of their mechanical properties proved their superior fracture resistance compared to current ceramic based protective coatings. Low internal stress in the coatings together with good adhesion enabled to deposit sufficiently thick coatings on the test samples and tools used in forming applications. The application relevant testing was performed at the end-customers of SHM in the Czech Republic.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info