Using TLS Fingerprints for OS Identification in Encrypted Traffic

Logo poskytovatele
Logo poskytovatele

Varování

Publikace nespadá pod Fakultu sportovních studií, ale pod Ústav výpočetní techniky. Oficiální stránka publikace je na webu muni.cz.
Autoři

LAŠTOVIČKA Martin ŠPAČEK Stanislav VELAN Petr ČELEDA Pavel

Rok publikování 2020
Druh Článek ve sborníku
Konference 2020 IEEE/IFIP Network Operations and Management Symposium (NOMS 2020)
Fakulta / Pracoviště MU

Ústav výpočetní techniky

Citace
www https://ieeexplore.ieee.org/document/9110319
Doi http://dx.doi.org/10.1109/NOMS47738.2020.9110319
Klíčová slova OS fingerprinting;passive monitoring;IPFIX;TLS
Přiložené soubory
Popis Asset identification plays a vital role in situational awareness building. However, the current trends in communication encryption and the emerging new protocols turn the well-known methods into a decline as they lose the necessary data to work correctly. In this paper, we examine the traffic patterns of the TLS protocol and its changes introduced in version 1.3. We train a machine learning model on TLS handshake parameters to identify the operating system of the client device and compare its results to well-known identification methods. We test the proposed method in a large wireless network. Our results show that precise operating system identification can be achieved in encrypted traffic of mobile devices and notebooks connected to the wireless network.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info