Granulocyte maturation determines ability to release chromatin NETs and loss of DNA damageresponse; these properties are absent in immature AML granulocytes

Logo poskytovatele
Autoři

LUKÁŠOVÁ E KOŘÍSTEK Zdeněk KLABUSAY M ONDŘEJ Vladan GRIGORYEV S BAČÍKOVÁ A ŘEZÁČOVÁ M FALK Martin VÁVROVÁ J KOHÚTOVÁ V KOZUBEK Stanislav

Rok publikování 2013
Druh Článek v odborném periodiku
Časopis / Zdroj Biochimica et biophysica acta : Molecular Cell Research
Citace
Doi http://dx.doi.org/10.1016/j.bbamcr.2012.12.012
Popis Terminally-differentiated cells cease to proliferate and acquire specific sets of expressed genes and functions distinguishing them from less differentiated and cancer cells. Mature granulocytes show lobular structure of cell nuclei with highly condensed chromatin in which HP1 proteins are replaced by MNEI. These structural features of chromatin correspond to low level of gene expression and the loss of some important functions as DNA damage repair, shown in this work and, on the other hand, acquisition of a new specific function consisting in the release of chromatin extracellular traps in response to infection by pathogenic microbes. Granulocytic differentiation is incomplete in myeloid leukemia and is manifested by persistence of lower levels of HP1? and HP1ß isoforms. This immaturity is accompanied by acquisition of DDR capacity allowing to these incompletely differentiated multi-lobed neutrophils of AML patients to respond to induction of DSB by ?-irradiation. Immature granulocytes persist frequently in blood of treated AML patients in remission. These granulocytes contrary to mature ones do not release chromatin for NETs after activation with phorbol myristate-12 acetate-13 and do not exert the neutrophil function in immune defence. We suggest therefore the detection of HP1 expression in granulocytes of AML patients as a very sensitive indicator of their maturation and functionality after the treatment. Our results show that the changes in chromatin structure underlie a major transition in functioning of the genome in immature granulocytes. They show further that leukemia stem cells can differentiate ex vivo to mature granulocytes despite carrying the translocation BCR/ABL.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info