Probabilistic Classification of Skeleton Sequences

Logo poskytovatele

Varování

Publikace nespadá pod Fakultu sportovních studií, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.
Autoři

SEDMIDUBSKÝ Jan ZEZULA Pavel

Rok publikování 2018
Druh Článek ve sborníku
Konference 29th International Conference on Database and Expert Systems Applications (DEXA 2018)
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
Doi http://dx.doi.org/10.1007/978-3-319-98812-2_4
Klíčová slova motion capture data; nearest-neighbor search; action recognition; action classification; re-ranking; similarity measure
Popis Automatic classification of 3D skeleton sequences of human motions has applications in many domains, ranging from entertainment to medicine. The classification is a difficult problem as the motions belonging to the same class needn't be well segmented and can be performed by subjects of various body sizes in different styles and speeds. The state-of-the-art recognition approaches commonly solve this problem by training recurrent neural networks to learn the contextual dependency in both spatial and temporal domains. In this paper, we employ a distance-based similarity measure, based on deep convolutional features, to search for the k-nearest motions with respect to a query motion being classified. The retrieved neighbors are analyzed and re-ranked by additional measures that are automatically chosen for individual queries. The combination of deep features, dynamism in the similarity-measure selection, and a new kNN classifier brings the highest classification accuracy on a challenging dataset with 130 classes. Moreover, the proposed approach can promptly react to changing training data without any need for a retraining process.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info