Investigating Community Detection Algorithms and their Capacity as Markers of Brain Diseases

Varování

Publikace nespadá pod Fakultu sportovních studií, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.
Autoři

VÝTVAROVÁ Eva FOUSEK Jan MIKL Michal REKTOROVÁ Irena HLADKÁ Eva

Rok publikování 2017
Druh Článek ve sborníku
Konference International Symposium on Grids and Clouds (ISGC) 2017. Academia Sinica, Taipei, Taiwan: Proceedings of Science
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
Doi http://dx.doi.org/10.22323/1.293.0018
Klíčová slova Classification (of information); Optimization; Population dynamics; Random variables
Popis In this paper, we present a workflow for evaluating resting-state brain functional connectivity with different community detection algorithms and their strengths to discriminate between health and Parkinson’s disease (PD) and mild cognitive impairment preceding Alzheimer’s disease (ADMCI). We further analyze the complexity of particular pipeline steps aiming to provide guidelines for both execution on computing infrastructure and further optimization efforts. On a dataset of 50 controls and 70 patients we measured an increased modularity coefficient with 81.8% accuracy of classifying PD versus controls and 76.2% accuracy of classifying ADMCI versus controls. Significantly higher modularity coefficient values were measured when the random matrix theory decomposition was adapted for network construction. These results were observed on networks of 82 nodes based on AAL atlas and 317 nodes based on multimodal parcellation atlas.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info