Pure spinors, intrinsic torsion and curvature in even dimensions

Logo poskytovatele

Varování

Publikace nespadá pod Fakultu sportovních studií, ale pod Přírodovědeckou fakultu. Oficiální stránka publikace je na webu muni.cz.
Autoři

TAGHAVI-CHABERT Arman

Rok publikování 2016
Druh Článek v odborném periodiku
Časopis / Zdroj Differential Geometry and its Applications
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
Doi http://dx.doi.org/10.1016/j.difgeo.2016.02.006
Obor Obecná matematika
Klíčová slova Complex Riemannian geometry; Pure spinors Distributions; Intrinsic torsion; Curvature prescription; Spinorial equations
Popis We study the geometric properties of a $2m$-dimensional complex manifold $M$ admitting a holomorphic reduction of the frame bundle to the structure group $P \subset Spin(2m, C)$, the stabiliser of the line spanned by a pure spinor at a point. Geometrically, $M$ is endowed with a holomorphic metric $g$, a holomorphic volume form, a spin structure compatible with $g$, and a holomorphic pure spinor field $\xi$ up to scale. The defining property of $\xi$ is that it determines an almost null structure, i.e. an $m$-plane distribution $N_\xi$ along which $g$ is totally degenerate. We develop a spinor calculus, by means of which we encode the geometric properties of $N_\xi$ corresponding to the algebraic properties of the intrinsic torsion of the $P$-structure. This is the failure of the Levi-Civita connection $\nabla$ of $g$ to be compatible with the $P$ -structure. In a similar way, we examine the algebraic properties of the curvature of $\nabla$. Applications to spinorial differential equations are given. In particular, we give necessary and sufficient conditions for the almost null structure associated to a pure conformal Killing spinor to be integrable. We also conjecture a Goldberg–Sachs-type theorem on the existence of a certain class of almost null structures when $(M, g)$ has prescribed curvature. We discuss applications of this work to the study of real pseudo-Riemannian manifolds.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info