Twistor Geometry of Null Foliations in Complex Euclidean Space

Logo poskytovatele

Varování

Publikace nespadá pod Fakultu sportovních studií, ale pod Přírodovědeckou fakultu. Oficiální stránka publikace je na webu muni.cz.
Autoři

TAGHAVI-CHABERT Arman

Rok publikování 2017
Druh Článek v odborném periodiku
Časopis / Zdroj SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
Doi http://dx.doi.org/10.3842/SIGMA.2017.005
Obor Obecná matematika
Klíčová slova twistor geometry; complex variables; foliations; spinors
Popis We give a detailed account of the geometric correspondence between a smooth complex projective quadric hypersurface $\mathcal{Q}^n$ of dimension $n \geq 3$, and its twistor space $\mathbb{PT}$, defined to be the space of all linear subspaces of maximal dimension of $\mathcal{Q}^n$. Viewing complex Euclidean space $\mathbb{CE}^n$ as a dense open subset of $\mathval{Q}^n$ , we show how local foliations tangent to certain integrable holomorphic totally null distributions of maximal rank on $\mathbb{CE}^n$ can be constructed in terms of complex submanifolds of $\mathbb{PT}$. The construction is illustrated by means of two examples, one involving conformal Killing spinors, the other, conformal Killing– Yano 2-forms. We focus on the odd-dimensional case, and we treat the even-dimensional case only tangentially for comparison.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info