Photorelaxation of imidazole and adenine via electron-driven proton transfer along H2O wires

Varování

Publikace nespadá pod Fakultu sportovních studií, ale pod Středoevropský technologický institut. Oficiální stránka publikace je na webu muni.cz.
Autoři

SZABLA Rafal GORA Robert W. JANICKI Mikolaj ŠPONER Jiří

Rok publikování 2016
Druh Článek v odborném periodiku
Časopis / Zdroj FARADAY DISCUSSIONS
Fakulta / Pracoviště MU

Středoevropský technologický institut

Citace
www http://pubs.rsc.org/en/Content/ArticleLanding/2016/FD/C6FD00131A#!divAbstract
Doi http://dx.doi.org/10.1039/c6fd00131a
Obor Fyzikální chemie a teoretická chemie
Klíčová slova EXCITED-STATE DEACTIVATION; INDUCED CHARGE-TRANSFER; SIGMA-ASTERISK STATES; WATER CLUSTERS; BASIS-SETS; GAS-PHASE; POLARIZATION PROPAGATOR; CONICAL INTERSECTIONS; DECAY MECHANISM; SINGLET-STATES
Popis Photochemically created pi sigma* states were classified among the most prominent factors determining the ultrafast radiationless deactivation and photostability of many biomolecular building blocks. In the past two decades, the gas phase photochemistry of pi sigma* excitations was extensively investigated and was attributed to N-H and O-H bond fission processes. However, complete understanding of the complex photorelaxation pathways of pi sigma* states in the aqueous environment was very challenging, owing to the direct participation of solvent molecules in the excited-state deactivation. Here, we present non-adiabatic molecular dynamics simulations and potential energy surface calculations of the photoexcited imidazole-(H2O)(5) cluster using the algebraic diagrammatic construction method to the second-order [ADC(2)]. We show that electron driven proton transfer (EDPT) along a wire of at least two water molecules may lead to the formation of a pi sigma*/S-0 state crossing, similarly to what we suggested for 2-aminooxazole. We expand on our previous findings by direct comparison of the imidazole-(H2O)(5) cluster to non-adiabatic molecular dynamics simulations of imidazole in the gas phase, which reveal that the presence of water molecules extends the overall excited-state lifetime of the chromophore. To embed the results in a biological context, we provide calculations of potential energy surface cuts for the analogous photorelaxation mechanism present in adenine, which contains an imidazole ring in its structure.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info