Similarity Searching for the Big Data Challenges and Research Objectives

Logo poskytovatele

Varování

Publikace nespadá pod Fakultu sportovních studií, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.
Autoři

ZEZULA Pavel

Rok publikování 2015
Druh Článek v odborném periodiku
Časopis / Zdroj MOBILE NETWORKS & APPLICATIONS
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
Doi http://dx.doi.org/10.1007/s11036-014-0547-2
Obor Informatika
Klíčová slova Big data; Scalability; Information retrieval; Similarity search; Findability; Data outsourcing; Data privacy; Information extraction
Popis Analysis of contemporary Big Data collections require an effective and efficient content-based access to data which is usually unstructured. This first implies a necessity to uncover descriptive knowledge of complex and heterogeneous objects to make them findable. Second, multimodal search structures are needed to efficiently execute complex similarity queries possibly in outsourced environments while preserving privacy. After explaining the impacts of Big Data on similarity searching and summarizing the state of the art in the search technology, four specific research objectives to tackle the challenges are outlined and discussed. It is believed that effective and efficient processing of raw data for object findability and developing hybrid similarity search structures for multi-modal and privacy-preserving searching are necessary to achieve a scalable similarity search technology able to operate on Big Data.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info