A NEURAL NETS URBAN LAND COVER CLASSIFICATION: A CASE STUDY OF BRNO (CZECHIA).

Varování

Publikace nespadá pod Fakultu sportovních studií, ale pod Přírodovědeckou fakultu. Oficiální stránka publikace je na webu muni.cz.
Autoři

KÝNOVÁ Andrea DOBROVOLNÝ Petr

Rok publikování 2015
Druh Článek v odborném periodiku
Časopis / Zdroj Acta Universitatis Carolinae Geographica
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www URL
Doi http://dx.doi.org/10.14712/23361980.2015.94
Obor Zemský magnetismus, geodesie, geografie
Klíčová slova image classification; multilayer perceptron; urban land cover; ASTER
Popis Accurate and updated land cover maps provide crucial basic information in a number of important enterprises, with sustainable development and regional planning far from the least of them. Remote sensing is probably the most efficient approach to obtaining a land cover map. However, certain intrinsic limitations limit the accuracy of automatic approaches to image classification. Classifications within highly heterogeneous urban areas are especially challenging. This study makes a presentation of multilayer perceptron (MLP), an artificial neural network (ANN), as an applicable approach to image classification. Optimal MLP architecture parameters were established by means of a training set. The resulting network was used to classify a sub-scene within ASTER imagery. The results were evaluated against a test dataset. The overall accuracy of classification was 94.8%. This is comparable to classification results from a maximum likelihood classifier (MLC) used for the same image. In built-up areas, MLP did not exaggerate built-up areas at the expense of other classes to the same extent as MLC.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info