Multi-modal Similarity Retrieval with a Shared Distributed Data Store

Logo poskytovatele

Varování

Publikace nespadá pod Fakultu sportovních studií, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.
Autoři

NOVÁK David

Rok publikování 2015
Druh Článek ve sborníku
Konference Scalable Information Systems: 5th International Conference, INFOSCALE 2014, Seoul, South Korea, September 25-26, 2014, Revised Selected Papers
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
Doi http://dx.doi.org/10.1007/978-3-319-16868-5_3
Obor Informatika
Klíčová slova similarity search; multi-modal search; Big Data; scalability
Popis We propose a generic system architecture for large-scale similarity search in various types of digital data. The architecture combines contemporary highly-scalable distributed data stores with recent efficient similarity indexes and also with other types of search indexes. The system is designed to provide several types of queries – distance-based similarity queries, term-based queries, attribute queries, and advanced queries combining several search aspects (modalities). The first part of this work is devoted to the generic architecture and to description of a similarity index PPP-Codes that is suitable for our system. In the second part, we describe a specific instance of this architecture that manages a 106 million image collection providing content-based visual search, keyword search, attribute-based access, and their combinations.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info