Rank Aggregation of Candidate Sets for Efficient Similarity Search

Logo poskytovatele

Varování

Publikace nespadá pod Fakultu sportovních studií, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.
Autoři

NOVÁK David ZEZULA Pavel

Rok publikování 2014
Druh Článek ve sborníku
Konference 25th International Conference on Database and Expert Systems Applications (DEXA 2014 )
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
Doi http://dx.doi.org/10.1007/978-3-319-10085-2_4
Obor Elektronika a optoelektronika, elektrotechnika
Klíčová slova Similarity Search; Metric Space; Approximation; Scalability
Popis Many current applications need to organize data with respect to mutual similarity between data objects. Generic similarity retrieval in large data collections is a tough task that has been drawing researchers’ attention for two decades. A typical general strategy to retrieve the most similar objects to a given example is to access and then refine a candidate set of objects; the overall search costs (and search time) then typically correlate with the candidate set size. We propose a generic approach that combines several independent indexes by aggregating their candidate sets in such a way that the resulting candidate set can be one or two orders of magnitude smaller (while keeping the answer quality). This achievement comes at the expense of higher computational costs of the ranking algorithm but experiments on two real-life and one artificial datasets indicate that the overall gain can be significant.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info