Finding Terms in Corpora for Many Languages with the Sketch Engine

Varování

Publikace nespadá pod Fakultu sportovních studií, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.
Autoři

KILGARRIFF Adam JAKUBÍČEK Miloš KOVÁŘ Vojtěch RYCHLÝ Pavel SUCHOMEL Vít

Rok publikování 2014
Druh Článek ve sborníku
Konference Proceedings of the Demonstrations at the 14th Conferencethe European Chapter of the Association for Computational Linguistics
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
www Plný text výsledku
Obor Informatika
Klíčová slova terminology; terms; corpora; sketch engine
Popis Term candidates for a domain, in a language, can be found by • taking a corpus for the domain, and a refer- ence corpus for the language • identifying the grammatical shape of a term in the language • tokenising, lemmatising and POS-tagging both corpora • identifying (and counting) the items in each corpus which match the grammatical shape • for each item in the domain corpus, compar- ing its frequency with its frequency in the refence corpus. Then, the items with the highest frequency in the domain corpus in comparison to the reference cor- pus will be the top term candidates. None of the steps above are unusual or innova- tive for NLP (see, e. g., (Aker et al., 2013), (Go- jun et al., 2012)). However it is far from trivial to implement them all, for numerous languages, in an environment that makes it easy for non- programmers to find the terms in a domain. This is what we have done in the Sketch Engine (Kilgarriff et al., 2004), and will demonstrate. In this abstract we describe how we addressed each of the stages above.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info