Label-free voltammetric detection of single nucleotide mismatches recognized by MutS protein

Warning

This publication doesn't include Faculty of Sports Studies. It includes Faculty of Medicine. Official publication website can be found on muni.cz.
Authors

MASAŘÍK Michal CAHOVÁ K. KIZEK René PALEČEK Emil FOJTA Miroslav

Year of publication 2007
Type Article in Periodical
Magazine / Source ANALYTICAL AND BIOANALYTICAL CHEMISTRY
MU Faculty or unit

Faculty of Medicine

Citation
Field Genetics and molecular biology
Keywords voltammetric detection;single nucleotide mismatches; MutS protein
Description MutS, a protein involved in DNA mismatch repair, recognizes mispaired and unpaired bases in duplex DNA. We have previously used MutS in an electrochemical double-surface technique (DST) for in-vitro detection of point mutations in DNA. The DST involved binding of unlabeled MutS to DNA heteroduplexes at the surface of magnetic beads followed by a highly sensitive electrochemical determination of the protein by measurement of a catalytic protein signal (peak H) at mercury electrodes. Detection of MutS using a peak resulting from oxidation of tyrosine and tryptophan residues of the protein at a carbon-paste electrode (CPE) was also possible but was approximately three orders of magnitude less sensitive. In this work we present an optimized technique for ex-situ voltammetric determination of MutS at a CPE. Choice of optimum experimental conditions (pH of supporting electrolyte, square-wave voltammetry settings, etc.) resulted in substantial improvement of the sensitivity of the assay, enabling detection of approximately 140 pg (1.6 fmol protein monomer) MutS in a 5-mu L sample. The sensitivity was increased further by acid hydrolysis of the protein before measurement. The hydrolyzed protein was detectable down to 5 pg (approx. 56 amol) MutS in 5 mu L solution. By using the DST combined with determination of the bound unlabeled MutS at the CPE we demonstrated selective interactions of the protein with single-base mismatches and discrimination among different base mispairs in 30-mer or 95-mer DNA duplexes. In agreement with previous studies, binding of the protein to the 30-mer substrates followed the trend G:T >> C:A > A:A > C:T > homoduplex. The electrochemical data were confirmed by use of an independent technique-a quartz-crystal microbalance for real-time monitoring of MutS interactions with DNA duplexes containing different base mispairs. By using the electrochemical DST a G:T mismatch was detectable in up to 1000-fold excess of homoduplex DNA.
Related projects:

You are running an old browser version. We recommend updating your browser to its latest version.

More info