Genomic imbalance detected in glioblastoma multigorme using high-resolution comparative genomic hybridization

Warning

This publication doesn't include Faculty of Sports Studies. It includes Faculty of Science. Official publication website can be found on muni.cz.
Authors

KUGLÍK Petr VRANOVÁ Vladimíra CEJPEK Pavel NEESALOVÁ Eva PEŠÁKOVÁ Martina RELICHOVÁ Jiina

Year of publication 2005
Type Article in Proceedings
Conference Chromosome Research
MU Faculty or unit

Faculty of Science

Citation
Field Genetics and molecular biology
Keywords Glioblastoma multiforme; chromosome aberrations; HR-CGH; FISH
Description Glioblastoma multiforme (GBM) is the most common form of primary neoplasm occurring in the central nervous system of adults. The tumour can develop from a low-degree or anaplastic astrocyte secondary glioblastoma, but more frequently it manifests itself with a short clinical anamnesi as primary glioblastoma. Cytogenetic diagnostic methods form an integral part glioblastoma diagnostics, however, conventional cytogenetics has been unable to identify consistent chromosomal aberrations in this group of tumours. Thus, more advanced molecular cytogenetic approaches are required to study the relationship between chromosomal instability and patient prognosis. The aim of this study was to screen for chromosomal imbalances in GBM by CGH and modified HR-CGH. Aim was to determine chromosomal changes on primary tumours and evaluate intratumoral genetic heterogenity by comparing gains and losses of chromosomes in central and peripheral areas of tumours. In this study, chromosomal abnormalities in 22 cases of GBM were analysed using CGH. A total of 99 different changes were observed (with a median of 5 changes per case). The most prominent gains were found in chromosomes 7, 19, 3q, 12, Xp. The losses concerned mainly chromosome 10, 6, 13q, 14q, 1p. Losses of chromosomal material (56) were more frequent than gains (43). To further increase detection rate of chromosomal imbalances, we applied HR-CGH in 11 cases GBM. HR-CGH revealed more aberrations per patiens than did CGH. A total of 172 abnormalities were found with HR-CGH (with a median of 9 changes per case). Low frequent aberrant clones with whole chromosome gains as well as losses of chromosomal segments were further revealed by HR-CGH. Furthermore, our data confirmed genetic heterogenity of GBM; gains and losses of DNA sequences have been found to a much lesser extend in central areas compared to the peripheral areas of tumours.
Related projects:

You are running an old browser version. We recommend updating your browser to its latest version.

More info