Realization of positive-operator-valued measures using measurement-assisted programmable quantum processors
Authors | |
---|---|
Year of publication | 2005 |
Type | Article in Periodical |
Magazine / Source | Physical Review A |
MU Faculty or unit | |
Citation | |
Field | Theoretical physics |
Keywords | programmable quantum processor; POVM |
Description | We study possible realizations of generalized quantum measurements on measurement-assisted programmable quantum processors. We focus our attention on the realization of von Neumann measurements and informationally complete positive-operator-valued measures. Nielsen and Chuang [Phys. Rev. Lett. 79, 321 (1997)] have shown that two unitary transformations implementable by the same programmable processor require mutually orthogonal states. We show that two different von Neumann measurements can be encoded into nonorthogonal program states. Nevertheless, given the dimension of a Hilbert space of the program register the number of implementable von Neumann measurements is still limited. As an example of a programmable processor we use the so-called quantum-information distributor. |
Related projects: |