A Hashed Schema for Similarity Search in Metric Spaces

Warning

This publication doesn't include Faculty of Sports Studies. It includes Faculty of Informatics. Official publication website can be found on muni.cz.
Authors

ZEZULA Pavel

Year of publication 2000
Type Article in Proceedings
Conference Proceedings of the First DELOS Network of Excellence Workshop on "Information Seeking, Searching and Querying in Digital Libraries"
MU Faculty or unit

Faculty of Informatics

Citation
Field Information theory
Description A hashing schema for similarity search in generic metric spaces is investigated, assuming that only distances for pairs of objects are known. Similarity Hashing partitions data objects in bounding regions without overlapping. The proposed structure aims at reducing both the I/O and the CPU search costs. Contrary to the traditional tree-based approaches, specific upper-bounds on the search cost can be determined and the data organized in such way that the I/O costs never exceed those needed for sequential scan. Though the current version is static, it can be modified for dynamic data; it is also suitable for parallel implementations. Insertion is fast, and once the computed distances in the search phase are reused to significantly reduce the number of distance computations, that is proportional to the CPU costs. Experiments with the current prototype provide very encouraging results, especially for small similarity ranges.
Related projects:

You are running an old browser version. We recommend updating your browser to its latest version.

More info