High entropy alloys (FeCoNi) 0.75 Cr 0.25-x Cu x - thermal stability and physical properties

Warning

This publication doesn't include Faculty of Sports Studies. It includes Faculty of Science. Official publication website can be found on muni.cz.
Authors

BROŽ Pavel VŘEŠŤÁL Jan SOPOUŠEK Jiří WEISS Karel BURSIK Jiri BURŠÍKOVÁ Vilma ZADERA Antonin MUELLER Peter CUPERA Jan ROGL Gerda PARZER Michael BAUER Ernst MICHOR Herwig ROGL Peter F

Year of publication 2024
Type Article in Periodical
Magazine / Source Journal of Alloys and Compounds
MU Faculty or unit

Faculty of Science

Citation
Web https://www.sciencedirect.com/science/article/pii/S0925838824012155?via%3Dihub
Doi http://dx.doi.org/10.1016/j.jallcom.2024.174628
Keywords HEA; Phase equilibria; DSC; Physical properties; Density; Thermal expansion; Hardness
Attached files
Description The paper reports on the phase stability of the (FeCoNi) 0.75 Cr 0.25-x Cu x HEA system with equimolar ratio of Fe, Co and Ni by differential scanning calorimetry (DSC) and measurements of physicochemical properties: density, electrical resistivity, Seebeck coefficient, thermal conductivity, and magnetic behaviour in a broad temperature region as well as hardness and elastic modulus at room temperature as a function of the gradual substitution of chromium by copper in a series of (FeCoNi) 0.75 Cr 0.25-x Cu x alloys with different mole fraction of Cu (x = 0, 0.05, 0.1, 0.15 and 0.2). DSC measurements showed that all alloys are thermally stable. Increasing content of Cu was found (i) to increase the formation of a fcc Cu-rich phase, (ii) to strengthen ferromagnetic interactions, resulting in rising ordered magnetic moments, as well as in growing ferromagnetic transition temperatures, and (iii) to distinctly change physical properties like electrical resistivity, thermal expansion, and mechanical properties. Experimental data regarding the phase stability are supported by CALPHAD calculations.
Related projects:

You are running an old browser version. We recommend updating your browser to its latest version.

More info