Transcriptomic landscape of Staphylococcus aureus during phage K infection

Warning

This publication doesn't include Faculty of Sports Studies. It includes Faculty of Science. Official publication website can be found on muni.cz.
Authors

FINSTRLOVÁ Adéla MAŠLAŇOVÁ Ivana BLASDEL REUTER Bob DOŠKAŘ Jiří GÖTZ Friedrich PANTŮČEK Roman

Year of publication 2022
Type Conference abstract
MU Faculty or unit

Faculty of Science

Citation
Description The treatment of infections caused by human and veterinary pathogen Staphylococcus aureus is becoming worldwide healthcare concern due to the increasing resistance to antibiotics. A promising alternative to currently used drugs is represented by lytic phages from genus Kayvirus, but their use is impeded by the lack of knowledge of phage-bacterium molecular interactions. We performed RNA sequencing of two S. aureus strains infected with Kayvirus bacteriophage K to decipher the transcriptomics of the phage lytic life-cycle and the host response. We found that the temporal transcriptional profile of phage K was comparable in both strains except for a few loci. The RNA-Seq data also revealed presence of phage non-coding RNAs, which may play a role in the regulation of phage and host gene expression. The response of S. aureus to phage K infection resembles a general stress response and involves upregulation of nucleotide, amino acid and energy synthesis and transporter genes and the downregulation of host transcription factors. The interaction of phage K with variable genetic elements of the host showed slight upregulation of gene expression of prophage integrases and antirepressors. The virulence genes involved in adhesion and immune evasion were only marginally affected. The study gives a comprehensive view on the phage-bacterium interactions that improves the knowledge of molecular mechanisms underlying the Kayvirus lytic action. We clarify the global transcriptional interactions between phage and host, which will ensure safer usage of phage therapeutics and may also serve as a basis for development of new antibacterial strategies.
Related projects:

You are running an old browser version. We recommend updating your browser to its latest version.

More info