Advanced database mining of efficient haloalkane dehalogenases by sequence and structure bioinformatics and microfluidics

Investor logo
Investor logo
Investor logo

Warning

This publication doesn't include Faculty of Sports Studies. It includes Faculty of Science. Official publication website can be found on muni.cz.
Authors

VAŠINA Michal VAŇÁČEK Pavel HON Jiri KOVÁŘ David FALDYNOVÁ Hana KUNKA Antonín BURYŠKA Tomáš BADENHORST Christoffel P. S. MAZURENKO Stanislav BEDNÁŘ David STAVRAKIS Stavros BORNSCHEUER Uwe T. DEMELLO Andrew DAMBORSKÝ Jiří PROKOP Zbyněk

Year of publication 2022
Type Article in Periodical
Magazine / Source Chem Catalysis
MU Faculty or unit

Faculty of Science

Citation
web https://doi.org/10.1016/j.checat.2022.09.011
Doi http://dx.doi.org/10.1016/j.checat.2022.09.011
Keywords enzyme mining; enzyme diversity; biocatalysts; microfluidics; bioinformatics; global data analysis; haloalkane dehalogenases; bioprospecting
Description Next-generation sequencing doubles genomic databases every 2.5 years. The accumulation of sequence data provides a unique opportunity to identify interesting biocatalysts directly in the databases without tedious and time-consuming engineering. Herein, we present a pipeline integrating sequence and structural bioinformatics with microfluidic enzymology for bioprospecting of efficient and robust haloalkane dehalogenases. The bioinformatic part identified 2,905 putative dehalogenases and prioritized a "small-but-smart'' set of 45 genes, yielding 40 active enzymes, 24 of which were biochemically characterized by microfluidic enzymology techniques. Combining microfluidics with modern global data analysis provided precious mechanistic insights related to the high catalytic efficiency of selected enzymes. Overall, we have doubled the dehalogenation "toolbox'' characterized over three decades, yielding biocatalysts that surpass the efficiency of currently available wild-type and engineered enzymes. This pipeline is generally applicable to other enzyme families and can accelerate the identification of efficient biocatalysts for industrial use.
Related projects:

You are running an old browser version. We recommend updating your browser to its latest version.

More info