The relation between accretion rate and jet power in early-type galaxies with thermally unstable hot atmospheres

Warning

This publication doesn't include Faculty of Sports Studies. It includes Faculty of Science. Official publication website can be found on muni.cz.
Authors

PLŠEK Tomáš WERNER Norbert GROSSOVÁ Romana TOPINKA Martin SIMIONESCU Aurora ALLEN Steven W.

Year of publication 2022
Type Article in Periodical
Magazine / Source Monthly Notices of the Royal Astronomical Society
MU Faculty or unit

Faculty of Science

Citation
Web
Doi http://dx.doi.org/10.1093/mnras/stac2770
Keywords accretion; accretion discs; galaxies: active; galaxies: jets; galaxies: nuclei; radio continuum: galaxies; X-ray: galaxies
Description We use Chandra X-ray data and Very Large Array radio observations for a sample of 20 nearby, massive, X-ray bright, early-type galaxies to investigate the relation between the Bondi accretion rates and the mechanical jet powers. We find a strong correlation (rho = 0.96(-0.09)(+0.03); BF10 > 100) between the Bondi accretion power, P-Bondi, and the mechanical jet power, P-jet, for a subsample of 14 galaxies, which also host cool H alpha+[N II] line emitting gas and thus likely have thermally unstable atmospheres. The relation between the Bondi accretion power and the mechanical jet power for this subsample is well described by a power-law model log P-Bondi/10(43) erg s(-1) = alpha + beta log P-jet/10(43) erg s(-1), where alpha = 1.10 +/- 0.25 and beta = 1.10 +/- 0.24 with an intrinsic scatter sigma = 0.08(-0.06)(+0.14) dex. The results indicate that in all galaxies with thermally unstable atmospheres the cooling atmospheric gas feeds the central black holes at a similar jet-to-Bondi power ratio. For the full sample of 20 galaxies, the correlation is weaker and in a subset of galaxies with no signs of H alpha+[N II] emission, we see a hint for a systematically lower jet-to-Bondi power ratio. We also investigate the dependence of jet power on individual quantities in the Bondi formula such as the supermassive black hole mass (M-center dot) and the specific entropy of the gas (K) at the Bondi radius. For the subsample of H alpha+[N II] emitting galaxies, we find a very tight correlation of P-jet with M-center dot (rho = 0.91(-0.11)(+0.06); BF10 > 100) and, although poorly constrained, a hint of an anticorrelation for P-jet and K (rho = -0.47(-0.37)(+0.60); BF10 = 1.1).
Related projects:

You are running an old browser version. We recommend updating your browser to its latest version.

More info