Plasma-treatment applications for fabricating third-generation solar cells
Authors | |
---|---|
Year of publication | 2022 |
Type | Chapter of a book |
MU Faculty or unit | |
Citation | |
Description | Low-temperature plasma processing is an interesting method of enhancing the performance and stability of nanostructured surfaces and interfaces in thin-film solar cell devices, and—most importantly—it enables manufacturing under low-temperature ambient conditions. In the last decade, traditional low-pressure batch processing using ultrapure gases has considerably shifted toward continuous processing under atmospheric conditions. Continuously processing optoelectronic nanomaterials by sheet-to-sheet (S2S) and roll-to-roll (R2R) methods represents a manufacturing revolution leading to low-cost, large-area, light-weight, flexible printed devices. However, S2S and R2R manufacturing requires nanomaterials to be quickly processed at low temperatures. Low-temperature atmospheric-pressure plasma can provide sufficient reactive and energetic species to rapidly process thermally sensitive surfaces and interfaces in thin-film solar cells and enable alternative manufacturing methods to time-consuming high-temperature processing. This chapter discusses recent advancements in the low-temperature plasma processing of various nano surfaces and interfaces in third-generation thin-film solar cells, which will importantly impact energy harvesting. |
Related projects: |