Metamictization and fluid-driven alteration triggering massive HFSE and REE mobilization from zircon and titanite: direct evidence from EMPA imaging and LA-ICP-MS analyses

Investor logo

Warning

This publication doesn't include Faculty of Sports Studies. It includes Faculty of Science. Official publication website can be found on muni.cz.
Authors

KUBEŠ Martin LEICHMANN Jaromír WERTICH Vojtěch MOZOLA Juraj HOLÁ Markéta KANICKÝ Viktor ŠKODA Radek

Year of publication 2021
Type Article in Periodical
Magazine / Source Chemical Geology
MU Faculty or unit

Faculty of Science

Citation
Web https://www.sciencedirect.com/science/article/pii/S0009254121005362
Doi http://dx.doi.org/10.1016/j.chemgeo.2021.120593
Keywords HFSE mobility; REE leaching; Fluid-driven alteration; Zircon; Titanite; Apatite
Description The major and trace element composition of the main HFSE-bearing phases from highly evolved miaskitic syenites has been investigated to assess their stability, an important control on HFSE retention and mobility during post-magmatic hydrothermal activity. The major HFSE carrier, abundant zircon (up to 5 vol%), has undergone intensive metamictization, caused by high initial U and Th along with the presence of early magmatic U-thorite inclusions. Subsequent to metamictization, zircon experienced pervasive fluid-driven alteration, as evidenced by strong depletion in Zr and Si, enrichment in non-formula elements (Ca, Fe, Al, P), deficient EMPA analytical totals, high porosity, and low BSE-intensities of strongly altered crystal interiors. Element maps suggest that extensive HFSE remobilization from altered zircon was controlled by interaction with oxidized aqueous solutions circulating through abundant microfractures that formed by volume expansion due to zircon metamictization. Enhanced HFSE mobility in hydrothermal fluids is reflected by the presence of a hydrated amorphous Zr-Th-U-Si-phase, filling microveinlets intimately associated with metamict zircons. In addition to HFSE remobilization from altered zircon, titanite released a significant amount of REE during interaction with the hydrothermal fluids that concurrently caused a fractionation of Eu in titanite, producing increased EuN/EuN* (4.16–22.2) in altered crystals. Extensively altered titanite grains with elevated EuN/EuN* are considerably depleted in ?REE+Y compared to unaffected crystals, showing that degree of positive Eu anomalies, relating to post-magmatic metasomatic overprint, appears to be a sensitive indicator for an intensity of hydrothermal alteration and even the total amount of released incompatible elements. Pronounced LREE enrichment accompanied by HREE depletion in the strongly altered crystals indicates greater LREE retention in titanite and higher HREE mobility in the hydrothermal system probably caused by complexing with fluoride ligands. Fluorine was most likely supplied through amphibole and biotite chloritization, as suggested by notably low F in the mafic silicates along with the formation of secondary F-rich titanite at the expense of altered biotite. Moreover, the dissolution of zircon and titanite and resistance of apatite to pervasive alteration indicates that remobilization of HFSE and REE from these phases occurred under alkaline conditions (pH 8–12), presumably controlled by potassium-dominated complexes transporting HFSE along with REE over long distances, as indicated by a close spatial linkage of syenite outcrops with U-mineralization. Our results clearly demonstrate: (1) extensive chemical dissolution of zircon controlled by its self-induced radiation damage; (2) high solubility of titanite and metamict zircon under alkaline conditions; (3) enhanced mobility and long-distance transport of HFSE and REE in alkali- and F-rich hydrothermal systems.
Related projects:

You are running an old browser version. We recommend updating your browser to its latest version.

More info