Dynamical in-situ observation of the lyophilization and vacuum-drying processes of a model biopharmaceutical system by an environmental scanning electron microscope

Investor logo

Warning

This publication doesn't include Faculty of Sports Studies. It includes Faculty of Science. Official publication website can be found on muni.cz.
Authors

VETRÁKOVÁ Ľubica NEDĚLA Vilém RUNŠTUK Jiří TIHLAŘÍKOVÁ Eva HEGER Dominik SHALAEV Evgenyi

Year of publication 2020
Type Article in Periodical
Magazine / Source International Journal of Pharmaceutics
MU Faculty or unit

Faculty of Science

Citation
Web https://doi.org/10.1016/j.ijpharm.2020.119448
Doi http://dx.doi.org/10.1016/j.ijpharm.2020.119448
Keywords Bovine serum albumin; Freeze-drying; Vacuum-drying; Environmental scanning electron microscopy
Description The paper discusses the real-time monitoring of the changing sample morphology during the entire lyophilization (freeze-drying) and vacuum-drying processes of model biopharmaceutical solutions by using an environmental scanning electron microscope (ESEM); the device's micromanipulators were used to study the interior of the samples in-situ without exposing the samples to atmospheric water vapor. The individual collapse temperatures (T-c) of the formulations, pure bovine serum albumin (BSA) and BSA/sucrose mixtures, ranged from - 5 to - 29 degrees C. We evaluated the impact of the freezing method (spontaneous freezing, controlled ice nucleation, and spray freezing) on the morphologies of the lyophiles at the constant drying temperature of - 20 degrees C. The formulations with T-c above - 20 degrees C resulted in the lyophiles' morphologies significantly dependent on the freezing method. We interpret the observations as an interplay of the freezing rates and directionalities, both of which markedly influence the morphologies of the frozen formulations, and, subsequently, the drying process and the mechanical stability of the freeze-dried cake. The formulation with T-c below - 20 degrees C yielded a collapsed cake with features independent of the freezing method. The vacuum-drying produced a material with a smooth and pore-free surface, where deep cracks developed at the end of the process.
Related projects:

You are running an old browser version. We recommend updating your browser to its latest version.

More info