On the uniqueness of cellular injectives
Authors | |
---|---|
Year of publication | 2019 |
Type | Article in Periodical |
Magazine / Source | Mathematical Proceedings of the Cambridge Philosophical Society |
MU Faculty or unit | |
Citation | |
Web | https://www.cambridge.org/core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society/article/on-the-uniqueness-of-cellular-injectives/D775F957CBCA550679F10BCE31D6DA5E |
Doi | http://dx.doi.org/10.1017/S0305004118000439 |
Keywords | locally presentable category; Boolean algebra; Banach space; cellular injective |
Description | A. Aviles and C. Brech proved an intriguing result about the existence and uniqueness of certain injective Boolean algebras or Banach spaces. Their result refines the standard existence and uniqueness of saturated models. They express a wish to obtain a unified approach in the context of category theory. We provide this in the framework of weak factorization systems. Our basic tool is the fat small object argument. |
Related projects: |