Efficient Algorithms for Asymptotic Bounds on Termination Time in VASS

Investor logo

Warning

This publication doesn't include Faculty of Sports Studies. It includes Faculty of Informatics. Official publication website can be found on muni.cz.
Authors

BRÁZDIL Tomáš CHATTERJEE Krishnendu KUČERA Antonín NOVOTNÝ Petr VELAN Dominik ZULEGER Florian

Year of publication 2018
Type Article in Proceedings
Conference 2018 33rd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)
MU Faculty or unit

Faculty of Informatics

Citation
Web ACM Digital Library
Doi http://dx.doi.org/10.1145/3209108.3209191
Keywords vector addition systems with states; termination
Description Vector Addition Systems with States (VASS) provide a well-known and fundamental model for the analysis of concurrent processes, parametrized systems, and are also used as abstract models of programs in resource bound analysis. In this paper we study the problem of obtaining asymptotic bounds on the termination time of a given VASS. In particular, we focus on the practically important case of obtaining polynomial bounds on termination time. Our main contributions are as follows: First, we present a polynomial-time algorithm for deciding whether a given VASS has a linear asymptotic complexity. We also show that if the complexity of a VASS is not linear, it is at least quadratic. Second, we classify VASS according to quantitative properties of their cycles. We show that certain singularities in these properties are the key reason for non-polynomial asymptotic complexity of VASS. In absence of singularities, we show that the asymptotic complexity is always polynomial and of the form Theta(n^k), for some integer k\leq d, where $d$ is the dimension of the VASS. We present a polynomial-time algorithm computing the optimal $k$. For general VASS, the same algorithm, which is based on a complete technique for the construction of ranking functions in VASS, produces a valid lower bound, i.e. a k such that the termination complexity is Omega(n^k). Our results are based on new insights into the geometry of VASS dynamics, which hold the potential for further applicability to VASS analysis.
Related projects:

You are running an old browser version. We recommend updating your browser to its latest version.

More info