Spatio-temporally resolved electric field measurement in homogeneous helium coplanar DBD using a phase-resolved 2D spectral imaging

Warning

This publication doesn't include Faculty of Sports Studies. It includes Faculty of Science. Official publication website can be found on muni.cz.
Authors

ČECH Jan NAVRÁTIL Zdeněk MORÁVEK Tomáš HODER Tomáš RÁHEĽ Jozef

Year of publication 2017
Type Conference abstract
MU Faculty or unit

Faculty of Science

Citation
Description The knowledge of spatio-temporal evolution of reduced electric field (E/n) within the dielectric barrier discharge is essential for understanding of role of electrons in the discharge development as well as the energy-to-heat transfer. A new spectroscopic technique for true 2D imaging of the E/n temporal evolution was tested. The technique was based on the known method of local E/n evaluation from the ratio of helium atomic lines (HeI 21P–31D 667.8 nm and HeI 21P–31S 728.1 nm). We have extended its charm by employing the ICCD camera to monitor simultaneously the discharge space via both respective interference filters. This gave us a synchronized, phase resolved 2D images of He atomic line intensities. The technique allowed to capture the E/n evolution in atmospheric pressure helium homogeneous coplanar DBD, from the end of Townsend phase till the slowdown of cathode-directed ionizing wave above the cathode dielectrics. Measurements were realized with the time resolution of 50 ns and spatial resolution of 25×25 µm2 – see figure below. Preliminary results gave the maximum electric field value of approx. 40 kV/cm.
Related projects:

You are running an old browser version. We recommend updating your browser to its latest version.

More info