Predicting the bioaccumulation of polyaromatic hydrocarbons and polychlorinated biphenyls in benthic animals in sediments

Investor logo

Warning

This publication doesn't include Faculty of Sports Studies. It includes Faculty of Science. Official publication website can be found on muni.cz.
Authors

TUIKKA A.I. LEPPANEN M.T. AKKANEN J. SORMUNEN A.J. LEONARDS P.E.G. VAN HATTUM B. VAN VLIET L.A. BRACK W. SMEDES Foppe KUKKONEN J.V.K.

Year of publication 2016
Type Article in Periodical
Magazine / Source Science of the Total Environment
MU Faculty or unit

Faculty of Science

Citation
Web http://www.sciencedirect.com/science/article/pii/S0048969716308051
Doi http://dx.doi.org/10.1016/j.scitotenv.2016.04.110
Field Environment influence on health
Keywords PAH; PCB; Black carbon; Equilibrium passive sampling; Bioconcentration factor; Lumbriculus variegatus
Description There were two main objectives in this study. The first was to compare the accuracy of different prediction methods for the chemical concentrations of polyaromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in the organism, based on the measured chemical concentrations existing in sediment dry matter or pore water. The predicted tissue concentrations were compared to the measured ones after 28-day laboratory test using oligochaeta worms (Lumbriculus variegatus). The second objective was to compare the bioaccumulation of PAHs and PCBs in the laboratory test with the in situ bioaccumulation of these compounds. Using the traditional organic carbon-water partitioning model, tissue concentrations were greatly overestimated, based on the concentrations in the sediment dry matter. Use of an additional correction factor for black carbon with a two-carbon model, significantly improved the bioaccumulation predictions, thus confirming that black carbon was important in binding the chemicals and reducing their accumulation. The patterns of PCB and PAH accumulation in sediments for laboratory-exposed L. variegatus were similar to those in field-collected Lumbriculidae worms. Field-collected benthic invertebrates and L. variegatus accumulated less PAHs than PCBs with similar lipophilicity. The biota to sediment accumulation factors of PAHs tended to decrease with increasing sediment organic carbon normalized concentrations. The presented data yields bioconcentration factors (BCF) describing the chemical water-lipid partition, which were found to be higher than the octanol-water partition coefficients, but on a similar level with BCFs drawn from relevant literature. In conclusion, using the two-carbon model method, or the measured freely dissolved pore water concentrations method is recommended for predicting the bioaccumulation of PAHs and PCBs.
Related projects:

You are running an old browser version. We recommend updating your browser to its latest version.

More info