Robust and complex approach of pathological speech signal analysis

Investor logo

Warning

This publication doesn't include Faculty of Sports Studies. It includes Central European Institute of Technology. Official publication website can be found on muni.cz.
Authors

MEKYSKA Jiří JANOUŠOVÁ Eva GOMEZ-VILDA Pedro SMÉKAL Zdeněk REKTOROVÁ Irena ELIÁŠOVÁ Ilona KOŠŤÁLOVÁ Milena MRAČKOVÁ Martina ALONSO-HERNANDEZ Jesus B. FAUNDEZ-ZANUY Marcos LOPEZ-DE-IPINA Karmele

Year of publication 2015
Type Article in Periodical
Magazine / Source Neurocomputing
MU Faculty or unit

Central European Institute of Technology

Citation
Web http://ac.els-cdn.com/S0925231215007304/1-s2.0-S0925231215007304-main.pdf?_tid=f6afcc20-9991-11e5-a498-00000aacb35f&acdnat=1449128969_feb07c43c67d9cd575899e67b07d63bb
Doi http://dx.doi.org/10.1016/j.neucom.2015.02.085
Field Informatics
Keywords Pathological speech; Disordered voice; Dysarthria; Speech processing; Bicepstrum; Non-linear dynamic features
Attached files
Description This paper presents a study of the approaches in the state-of-the-art in the field of pathological speech signal analysis with a special focus on parametrization techniques. It provides a description of 92 speech features where some of them are already widely used in this field of science and some of them have not been tried yet (they come from different areas of speech signal processing like speech recognition or coding). As an original contribution, this work introduces 36 completely new pathological voice measures based on modulation spectra, inferior colliculus coefficients, bicepstrum, sample and approximate entropy and empirical mode decomposition. The significance of these features was tested on 3 (English, Spanish and Czech) pathological voice databases with respect to classification accuracy, sensitivity and specificity. To our best knowledge the introduced approach based on complex feature extraction and robust testing outperformed all works that have been published already in this field. The results (accuracy, sensitivity and specificity equal to 100.0 +/- 0.0%) are discussable in the case of Massachusetts Eye and Ear Infirmary (MEEI) database because of its limitation related to a length of sustained vowels, however in the case of Principe de Asturias (PdA) Hospital in Alcala de Henares of Madrid database we made improvements in classification accuracy (82.1 +/- 3.3%) and specificity (83.8 +/- 5.1%) when considering a single-classifier approach. Hopefully, large improvements may be achieved in the case of Czech Parkinsonian Speech Database (PARCZ), which are discussed in this work as well. All the features introduced in this work were identified by Mann-Whitney U test as significant (p < 0.05) when processing at least one of the mentioned databases. The largest discriminative power from these proposed features has a cepstral peak prominence extracted from the first intrinsic mode function (p = 6.9443 x 10(-32)) which means, that among all newly designed features those that quantify especially hoarseness or breathiness are good candidates for pathological speech identification. The paper also mentions some ideas for the future work in the field of pathological speech signal analysis that can be valuable especially under the clinical point of view. (C) 2015 Elsevier B.V. All rights reserved.
Related projects:

You are running an old browser version. We recommend updating your browser to its latest version.

More info