Identification of AHK2- and AHK3-like cytokinin receptors in Brassica napus reveals two subfamilies of AHK2 orthologues

Investor logo
Investor logo
Investor logo
Investor logo
Investor logo
Investor logo

Warning

This publication doesn't include Faculty of Sports Studies. It includes Central European Institute of Technology. Official publication website can be found on muni.cz.
Authors

KUDEROVÁ Alena GALLOVÁ Lucia KURICOVÁ Katarína NEJEDLÁ Eliška ČURDOVÁ Anna MICENKOVÁ Lenka PLÍHAL Ondřej ŠMAJS David SPÍCHAL Lukáš HEJÁTKO Jan

Year of publication 2015
Type Article in Periodical
Magazine / Source Journal of Experimental Botany
MU Faculty or unit

Central European Institute of Technology

Citation
Web http://jxb.oxfordjournals.org/content/early/2014/10/20/jxb.eru422.full.pdf
Doi http://dx.doi.org/10.1093/jxb/eru422
Field Botany
Keywords CHASE-containing His kinase; E. coli-based live-cell competitive receptor assay; gene structure; JBnB library; modular protein architecture; phylogenetic analysis
Attached files
Description Cytokinin (CK) signalling is known to play key roles in the regulation of plant growth and development, crop yields, and tolerance to both abiotic stress and pathogen defences, but the mechanisms involved are poorly characterized in dicotyledonous crops. Here the identification and functional characterization of sensor histidine kinases homologous to Arabidopsis CK receptors AHK2 and AHK3 in winter oilseed rape are presented. Five CHASE-containing His kinases were identified in Brassica napus var. Tapidor (BnCHK1–BnCHK5) by heterologous hybridization of its genomic library with gene-specific probes from Arabidopsis. The identified bacterial artificial chromosome (BAC) clones were fingerprinted and representative clones in five distinct groups were sequenced. Using a bioinformatic approach and cDNA cloning, the precise gene and putative protein domain structures were determined. Based on phylogenetic analysis, four AHK2 (BnCHK1–BnCHK4) homologues and one AHK3 (BnCHK5) homologue were defined. It is further suggested that BnCHK1 and BnCHK3, and BnCHK5 are orthologues of AHK2 and AHK3, originally from the B. rapa A genome, respectively. BnCHK1, BnCHK3, and BnCHK5 displayed high affinity for trans-zeatin (1–3nM) in a live-cell competitive receptor assay, but not with other plant hormones (indole acetic acid, GA3, and abscisic acid), confirming the prediction that they are genuine CK receptors. It is shown that BnCHK1 and BnCHK3, and BnCHK5 display distinct preferences for various CK bases and metabolites, characteristic of their AHK counterparts, AHK2 and AHK3, respectively. Interestingly, the AHK2 homologues could be divided into two subfamilies (BnCHK1/BnCK2 and BnCHK3/BnCHK4) that differ in putative transmembrane domain topology and CK binding specificity, thus implying potential functional divergence.
Related projects:

You are running an old browser version. We recommend updating your browser to its latest version.

More info