Expansion of Access Tunnels and Active-Site Cavities Influence Activity of Haloalkane Dehalogenases in Organic Cosolvents.

Investor logo
Investor logo
Investor logo

Warning

This publication doesn't include Faculty of Sports Studies. It includes Faculty of Science. Official publication website can be found on muni.cz.
Authors

ŠTĚPÁNKOVÁ Veronika KHABIRI M. BREZOVSKÝ Jan PAVELKA Antonín SYKORA J. AMARO M. MINOFAR B. PROKOP Zbyněk HOF M. ETTRICH R. CHALOUPKOVÁ Radka DAMBORSKÝ Jiří

Year of publication 2013
Type Article in Periodical
Magazine / Source ChemBioChem
MU Faculty or unit

Faculty of Science

Citation
Doi http://dx.doi.org/10.1002/cbic.201200733
Field Biochemistry
Keywords haloalkane dehalogenases
Description The use of enzymes for biocatalysis can be significantly enhanced by using organic cosolvents in the reaction mixtures. Selection of the cosolvent type and concentration range for an enzymatic reaction is challenging and requires extensive empirical testing. An understanding of protein-solvent interaction could provide a theoretical framework for rationalising the selection process. Here, the behaviour of three model enzymes (haloalkane dehalogenases) was investigated in the presence of three representative organic cosolvents (acetone, formamide, and isopropanol). Steady-state kinetics assays, molecular dynamics simulations, and time-resolved fluorescence spectroscopy were used to elucidate the molecular mechanisms of enzyme-solvent interactions. Cosolvent molecules entered the enzymes’ access tunnels and active sites, enlarged their volumes with no change in overall protein structure, but surprisingly did not act as competitive inhibitors. At low concentrations, the cosolvents either enhanced catalysis by lowering K0.5 and increasing kcat , or caused enzyme inactivation by promoting substrate inhibition and decreasing kcat . The induced activation and inhibition of the enzymes correlated with expansion of the active-site pockets and their occupancy by cosolvent molecules. The study demonstrates that quantitative analysis of the proportions of the access tunnels and active-sites occupied by organic solvent molecules provides the valuable information for rational selection of appropriate protein-solvent pair and effective cosolvent concentration.
Related projects:

You are running an old browser version. We recommend updating your browser to its latest version.

More info