Nano-modification of surfaces using low-cost ambient air diffuse plasma
Authors | |
---|---|
Year of publication | 2013 |
Type | Conference abstract |
MU Faculty or unit | |
Citation | |
Description | . The results indicate that plasma treatment governs the treated surfaces by polar hydrophilic oxygen-based groups and reduces the amount of carbon contaminants. These processes led to higher surface energy and therefore to higher adhesion between applied coatings and plasma treated substrate. Since the DCSBD plasma may operate in various atmospheric conditions, from low-cost ambient air up to various combinations of different carrier gasses (N2, Ar, He) mixed with monomers (plasma enhanced CVD); the DCSBD treatment may be used to achieve various chemistry of . The results indicate that plasma treatment governs the treated surfaces by polar hydrophilic oxygen-based groups and reduces the amount of carbon contaminants. These processes led to higher surface energy and therefore to higher adhesion between applied coatings and plasma treated substrate. Since the DCSBD plasma may operate in various atmospheric conditions, from low-cost ambient air up to various combinations of different carrier gasses (N2, Ar, He) mixed with monomers (plasma enhanced CVD); the DCSBD treatment may be used to achieve various chemistry of treated surfaces. |
Related projects: |